
ORNL/TM-165912

Research Software Engineering
Efforts for DataFlow: FY2021
Developments

Marshall McDonnell
Addi Malviya-Thakur
Greg Shutt
Suhas Somnath
Dale Stansberry
Olga Kuchar

September 2021

ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website: www.osti.gov/

Reports produced before January 1, 1996, may be purchased by members of the public
from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: 703-605-6000 (1-800-553-6847)
TDD: 703-487-4639
Fax: 703-605-6900
E-mail: info@ntis.gov
Website: http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Ex-
change representatives, and International Nuclear Information System representatives from the
following source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone: 865-576-8401
Fax: 865-576-5728
E-mail: report@osti.gov
Website: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal lia-
bility or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or rep-
resents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not nec-
essarily constitute or imply its endorsement, recommendation, or fa-
voring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

www.osti.gov/
mailto:info@ntis.gov
http://classic.ntis.gov/
mailto:reports@osti.gov
http://www.osti.gov/contact.html

ORNL/TM-165912

Research Software Engineering Efforts for DataFlow: FY2021 Developments

Computer Science and Mathematics Division

Marshall McDonnell

Addi Malviya-Thakur

National Center for Computational Sciences

Greg Shutt

Suhas Somnath

Dale Stansberry

Olga Kuchar

September 2021

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283
managed by

UT-Battelle LLC
for the

US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

CONTENTS

LIST OF FIGURES . v
ABBREVIATIONS . vii
ABSTRACT . 1
1. Introduction . 1
2. Software Overview and Architecture . 1
3. Progress on Software Developments . 2

3.1 DataFlow Service . 2
3.2 New Features . 2
3.3 Globus Library Dependency . 3
3.4 Globus Connect Server Service . 3

3.4.1 Configurable Setup . 3
3.4.2 Containerization . 4

4. Progress on Operations . 4
4.1 Demonstration Service . 4
4.2 New Staging Environment . 5
4.3 Documentation of a DataFlow Deployment . 5
4.4 Infrastructure Repositories . 5

5. Other Notable Outcomes . 6
6. Conclusion . 6
7. REFERENCES .

iii

LIST OF FIGURES

1 Current software architecture of the DataFlow project. 2

v

ABBREVIATIONS
AWS Amazon Web Services
CADES Compute and Data Environment for Science
CADES-OR Compute and Data Environment for Science - Open Research
CI Continuous Integration
CNMS Center for Nanophase Materials Sciences
EC2 Elastic Compute Cloud
GCS Globus Connect Server
GCSv4 Globus Connect Server version 4
GCSv5 Globus Connect Server version 5
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IaC Infrastructure-as-Code
JSON JavaScript Object Notation
ORNL Oak Ridge National Laboratory
UI User Interface

vii

ABSTRACT

DataFlow is a web application that helps scientific data to flow from one source location to another
destination location. DataFlow helps scientists easily capture scientific metadata associated with an
experiment and transmit both metadata and experimental data to a designated, centralized data storage
resource. This report describes the software engineering efforts and architecture of the project for the fiscal
year 2021 developments. We hope it effectively communicates findings from our work, challenges we have
overcome, and how we will continue our development of DataFlow in the future.

1. Introduction

DataFlow is a web application that helps facilitate scientific data to flow from one source location to
another destination location. DataFlow helps scientists easily capture scientific metadata associated with an
experiment and transmit both metadata and experimental data to a designated, centralized data storage
resource.

Currently, the target destination is the Compute and Data Environment for Science, or CADES (1), $HOME
storage area for a User (2). This is accomplished by providing a simple web interface for Users to upload
data, annotate with metadata, and then transfer that data from the source to the destination location.

One key use case for DataFlow is to help migrate data from off-network instruments to a destination that is
both on-network and more easily accessible by a research team. Off-network refers to the fact that ORNL
has an internal network not accessible to the outside internet but also to some machines physically within
ORNL but are just not allowed on the ORNL network. This may be due to hardware that is running a
required operating system that is not supported to run on the network or specific instrument hardware that
cannot be managed by the current set of monitoring tools on the network. Thus, off-network implies that
there is no connection to the ORNL "on-network" and all of the ORNL services (such as CADES
OpenStack cloud or other compute infrastructure accessible only from within ORNL’s network).

Moving data from off-network instruments to on-network locations is accomplished by deploying an
instance of DataFlow that is accessible by the off-network instrument via HTTP / HTTPS but also to the
on-network destination for the data transfer. Thus, a physical server running the DataFlow software is
accessible by the off-network instruments via an approved HTTP / HTTPS port to the specific internet
protocol (IP) address of this server only. The DataFlow server is on-network and has access to on-network
ORNL services. The experimentalist at the off-network instrument can upload the experimental data,
annotate with metadata, and have the datasets transferred to an on-network, destination location. From the
destination location, the rest of the research team can perform data reduction, data analytics, or a variety of
computational tasks on the data either manually or via automated processes. One note for this use case is
that it does require a physical server to be installed in the off-network enclave for DataFlow to be deployed
on, which requires an upfront cost to use the service.

This report describes the software engineering efforts and architecture of the project for the fiscal year 2021
developments. The current developments in this report cover the progress on adding new features to the
core DataFlow service, initial work on containerization of DataFlow and its different services, GCS
endpoint operations, new infrastructure for the project, and overall improvements to the DataFlow project.

2. Software Overview and Architecture

1

In Fig. 1, a high-level software architecture is presented for DataFlow. The core of DataFlow is a web
application using the Ruby on Rails framework (3) that orchestrates the user interface interactions, upload
of files, and transfer of files to their destination. Also included in the core application is a Phusion
Passenger (4) application server and a NGINX (5) web server with capabilities for large file upload (6) to
the application server. This core application communicates with multiple dependent services, such as a
source location GCS endpoint, to initiate the transfer of data to the destination GCS endpoint location (7), a
PostgreSQL database (8) for the core service data such as User credential storage, and a Solr database (9)
for indexing of the data. The core application and all these services together are the DataFlow application
as a whole.

Figure 1. Current software architecture of the DataFlow project.

3. Progress on Software Developments

3.1 DataFlow Service

DataFlow as a whole is made of up many different services as previously described. Yet, there is a core
DataFlow service which is the Ruby on Rails (3) web application in charge of the overall orchestration of
actions for DataFlow using the many different services. Below are the software developments specifically
related to the DataFlow service.

3.2 New Features

Below is a list of new features introduced over the year for the DataFlow core service.

• Added the dataset name to the directory created on the destination location

• Corrected the metadata JavaScript Object Notation (JSON) file written to the destination

2

• Allowed the upload of an entire directory

• Sorted the view of the datasets in the User Interface (UI)

• Switched to human-readable file sizes in the UI

• Added a navigation bar for the UI

• Added an initial landing page to the UI instead of immediate redirect to Globus for authentication

• Documentation added to the core DataFlow service. Added to UI as a link so User can access at any
time to help explain DataFlow’s purpose and guide the User.

• Various other updates to the UI for design changes. Written in markdown and stored in the
application code repository.

3.3 Globus Library Dependency

The core DataFlow service has a dependency on an "in-house" Ruby library for handling Globus
interactions. While working on deploying a development version of DataFlow, the DataFlow core service
showed authentication errors stating no credentials were provided during Globus transfers. It was clear they
were being submitted in the request by the higher-level DataFlow core service code. Yet, it was found that
authentication credentials were being "dropped" in the underlying Globus Ruby library. This authentication
requirement was fixed in the underlying library and confirmed to work during manual integration testing.

This Globus library code repository is found at: https://code.ornl.gov/cades-gateway/globus

3.4 Globus Connect Server Service

Below are the software developments specifically related to the Globus Connect Server Version 4 (GCSv4)
(10) endpoint setup as a required third-party service for data transfer in DataFlow.

3.4.1 Configurable Setup

The initial release of DataFlow was for the specific Gateway machine setup for the Center for Nanophase
Materials Sciences (CNMS) User Facility (11) and sent data to the GCSv4 endpoint destination location at
CADES Open Research (CADES-OR) (2). The code for DataFlow contained the hard-coded information
for both the source (CNMS Gateway machine) and destination (CADES-OR) GCS endpoints.

These options were changed to configurable parameters specified at build-time and deployment of
DataFlow. The data transfer controller and GCS endpoint controller required refactoring, along with
additions to configuration files.

This allowed for the ability to change the GCS endpoints and, for future work, will help enable the
following:

• Allow research teams outside of ORNL to use their own specified GCS endpoints for both source
and destination.

3

https://code.ornl.gov/cades-gateway/globus

• Set the source and destination endpoints at run-time via the UI.

• Change the endpoints for testing GCS endpoints setup for DataFlow integration testing.

3.4.2 Containerization

In efforts to containerize the entire DataFlow application, the GCS service was the only service besides the
main application that did not have a readily available container image from DockerHub. Thus, we created a
container image definition for this service. The target was the GCS version 4 (GCS v4) and not the current
GCS version 5 (GCS v5) endpoint. From direct discussion with Globus team members on the Globus
Google Groups forum, containerization for the GCSv5 is not yet available but is a work-in-progress
currently (12).

When containerizing a GCS v4 endpoint, there were many challenges found that were non-trivial.

First, it was discovered that the data_interface in the GCS configuration file was not being set. This is
not set because branching logic (if statement) in the Globus Python library was mislabeling the container
to be an Amazon Web Services (AWS) Elastic Compute Cloud (EC2) instance, flagging it as True for
is_ec2. If the [GridFTP] section’s DataInterface is explicitly set to the IP address of the instance, the
default behavior of flagging as an EC2 instance is overridden.

This same issue arose in the DataFed setup of a new DataFed data repository. It was communicated across
the projects how to provide this simple fix and it also remedied the problem.

Second, it was discovered that the MyProxy server (13) running inside the container for the GCSv4
endpoint was unable to be activated from the running application. Interestingly, the prescribed port for
MyProxy was open between the container and the host so MyProxy network traffic should be able to
connect to the service running in the container. However, only after setting up the container to run in shared
network mode with the host could the MyProxy service connect to the DataFlow application in this
container setup. This is achieved by adding the --net=host option when creating the Docker container.

Third, in some instances, like for the container setup, the endpoint will be generated as the application is
spun up for each service. Yet, DataFlow needs to know the source endpoint ahead of time before it spins up
as a service. Thus, on startup, the option was added to either use the GLOBUS_SOURCE_ENDPOINT if it is
defined or to use the globus-cli tool to complete an OAuth request (14) to extract the new source
endpoint UUID.

Fourth, it was found that pseudo-tty had to be added to the GCSv4 container during run-time.

4. Progress on Operations

4.1 Demonstration Service

In working with the ORNL Biosciences Division on a potential collaboration for their off-network
instruments, a demonstration of the DataFlow application was requested. This was a fair point since, as
noted previously, this use case does require physical hardware purchases and installation costs in the
off-network enclave for DataFlow to be deployed on, which requires an upfront cost to use the service.

4

This led to the DataFlow team standing up a demonstration service site that would be available to all of
ORNL to use. This would allow for demonstrating DataFlow to any team interested in this capability.

The website https://dataflow.ornl.gov was created as an ORNL-wide, demonstration deployment of
DataFlow. This instance is running the CADES OpenStack cloud (15) on a virtual machine and has the
destination of the data landing in the CADES $HOME directory (2) of the User. This also allows the
DataFlow team to now maintain a "production-like" instance of DataFlow to get feedback on new features
and developments.

4.2 New Staging Environment

To accommodate new features that are being developed by the DataFlow team, a staging environment is
currently being set up at https://dataflow-staging.ornl.gov. This allows for the team to have a place for
manual integration testing and quality assurance before rolling new features and improvements over to the
production stage running at https://dataflow.ornl.gov, along with other deployed instances such as the
CNMS DataFlow gateway.

This is still under active development to capture all the configuration management installation in code.

4.3 Documentation of a DataFlow Deployment

As both the new demonstration service and the staging environment were being set up, it was realized that
even a manual deployment of DataFlow was not captured yet in documentation. A markdown document
was created and added to the code repository for DataFlow to document each installation step of each
service along with template configuration files. An original version of the document was created after the
initial deployment of the demonstration service. However, the document is being actively revised and
corrected as we now move to setting up the new staging environment. The document is under version
control so collaborative updates and history of changes are being captured.

This deployment document is currently found in the code repository at:
https://code.ornl.gov/cades-gateway/cades-gateway/-/blob/dev/DEPLOY.md

4.4 Infrastructure Repositories

Over the last year, DataFlow has had lots of changes to its infrastructure. This includes the following:

• Development environment infrastructure was set up in CADES OpenStack cloud

• Development environment was used to test containerization so was configured with only container
build and run-time dependencies (and not DataFlow dependencies)

• Testing destination GCS endpoint infrastructure was set up in CADES OpenStack cloud

• Development environment was switched to the DataFlow demonstration service and now has a "bare
metal" deployment (non-containerized)

• Test destination endpoint was no longer being used so infrastructure was removed

5

https://dataflow.ornl.gov
https://dataflow-staging.ornl.gov
https://dataflow.ornl.gov
https://code.ornl.gov/cades-gateway/cades-gateway/-/blob/dev/DEPLOY.md

• Staging environment infrastructure was set up in CADES OpenStack cloud

With each of these changes, errors can occur and there can be a desire to resurrect or rollback to a previous
state of the DataFlow infrastructure. With software development, this is easy with version control since the
history is preserved. Yet, with infrastructure, this is a bit more challenging for provisioning cloud compute
assets from code and basically impossible with physical servers (for infrastructure provisioning, not
configuration management changes). As seen above, aside from the off-network instrument deployments,
there are lots of cloud compute deployments for the DataFlow project.

To capture the infrastructure needed for DataFlow on cloud compute resources, we have implemented
infrastructure-as-code (IaC) (16). One of the leading technologies for this is the tool from HashiCorp
called Terraform (17). Terraform allows for writing declarative programming modules for API interfaces
and, for cloud computing APIs, to provision resources with that API.

With infrastructure-as-code, the infrastructure is captured as a "recipe" for the current development and
operations teams as the "source of truth" for what infrastructure is currently running and provides version
control for changes that are created. From the IaC, the software engineering tools or running continuous
integration (CI) can be applied even to infrastructure code: linting of the code, testing to ensure it
provisions infrastructure properly, and automated pipelines to use the IaC to deploy infrastructure.

HashiCorp’s Terraform was used to write the IaC for DataFlow. The setup is currently not in a state where
the entire DataFlow team can collaborate. Yet, as this capability matures with the team, it can be migrated
to be such that any member of the team can manage the infrastructure state from IaC repositories that sit
next to the software repositories.

The DataFlow IaC code repository is found at:
https://code.ornl.gov/cades-gateway/infrastructure/deployment

5. Other Notable Outcomes

Outside of the software development and operations of DataFlow, communications for DataFlow were
prepared. These included a poster presentation and an oral presentation on DataFlow at ORNL events.

A poster on DataFlow was presented during the ORNL Software and Data Expo 2021 (18) in May. The
presentation can be found in the RESolution publication system at:
https://resolution.ornl.gov/pub/preview/157959

An oral presentation and demonstration of DataFlow was given to the ORNL Data Assets Council on
August 11th, 2021. An overview was provided along with a live demonstration of https://dataflow.ornl.gov
and then an interactive poll was performed to get immediate feedback on the DataFlow service. The
feedback was used in project management to prioritize features to support in the future.

6. Conclusion

The details included in the report cover the software engineering efforts and architecture of the project for
the fiscal year 2021 developments. The current developments in this report cover the progress on adding
new features to the core DataFlow service, initial work on containerization of DataFlow and its different

6

https://code.ornl.gov/cades-gateway/infrastructure/deployment
https://resolution.ornl.gov/pub/preview/157959
https://dataflow.ornl.gov

services, GCS endpoint operations, new infrastructure for the project, and overall improvements to the
DataFlow project.

Finally, we have noted future developments and planned features where necessary in the report. We plan to
submit a follow-on report next year to also capture these feature developments, other developments of the
project not captured in this report over the next year, and reasoning and decisions for the choices made.

7

 7. REFERENCES

References

[1] ORNL, “CADES Website,” 2021. [Online]. Available: "https://cades.ornl.gov/"

[2] ——, “CADES SHPC Condos Documentation Website,” 2021. [Online]. Available:
"https://docs.cades.ornl.gov/#condos/overview/"

[3] Rails, “Ruby on Rails Website,” 2021. [Online]. Available: "https://rubyonrails.org"

[4] Phusion Passenger, “Phusion Passenger Website,” 2021. [Online]. Available:
"https://www.phusionpassenger.com/"

[5] NGINX, “NGINX Website,” 2021. [Online]. Available: "https://nginx.com"

[6] ——, “NGINX’s nginx-upload-module Website,” 2021. [Online]. Available:
"https://www.nginx.com/resources/wiki/modules/upload/"

[7] Globus, “Globus Connect Server Documentation Website,” 2021. [Online]. Available:
"https://www.globus.org/globus-connect-server"

[8] PostgreSQL, “PostgreSQL Website,” 2021. [Online]. Available: "https://www.postgresql.org/"

[9] Apache, “Solr Website,” 2021. [Online]. Available: "https://solr.apache.org/"

[10] Globus, “Globus Connect Server version 4 Documentation Website,” 2021. [Online]. Available:
"https://www.globus.org/globus-connect-server/v4/"

[11] ORNL, “Center for Nanophase Materials Sciences Website,” 2021. [Online]. Available:
"https://www.ornl.gov/facility/cnms"

[12] Globus, “Message in Feb. 2021 with Jason Alt of Globus on Globus Google Groups about GCSv5
containers,” 2021. [Online]. Available:
"https://groups.google.com/a/globus.org/g/discuss/c/k3SYIX_NP0A/m/lcXfHxE3AgAJ"

[13] NCSA, “MyProxy Website,” 2019. [Online]. Available: "http://grid.ncsa.illinois.edu/myproxy/"

[14] OAuth, “OAuth Website,” 2021. [Online]. Available: "https://oauth.net/"

[15] ORNL, “CADES Cloud Documentation Website,” 2021. [Online]. Available:
"https://docs.cades.ornl.gov/#openstack/about/cloud-overview/"

[16] C. Riley, “Version your Infrastructure,” 2015. [Online]. Available:
"https://devops.com/version-your-infrastructure/"

[17] HashiCorp, “Terraform Website,” 2021. [Online]. Available: "https://www.terraform.io/"

[18] ORNL, “Software and Data Expo 2021,” 2021. [Online]. Available:
"https://softwaredataexpo.ornl.gov/"

For backcover

"https://cades.ornl.gov/"
"https://docs.cades.ornl.gov/#condos/overview/"
"https://rubyonrails.org"
"https://www.phusionpassenger.com/"
"https://nginx.com"
"https://www.nginx.com/resources/wiki/modules/upload/"
"https://www.globus.org/globus-connect-server"
"https://www.postgresql.org/"
"https://solr.apache.org/"
"https://www.globus.org/globus-connect-server/v4/"
"https://www.ornl.gov/facility/cnms"
"https://groups.google.com/a/globus.org/g/discuss/c/k3SYIX_NP0A/m/lcXfHxE3AgAJ"
"http://grid.ncsa.illinois.edu/myproxy/"
"https://oauth.net/"
"https://docs.cades.ornl.gov/#openstack/about/cloud-overview/"
"https://devops.com/version-your-infrastructure/"
"https://www.terraform.io/"
"https://softwaredataexpo.ornl.gov/"

	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	Introduction
	Software Overview and Architecture
	Progress on Software Developments
	DataFlow Service
	New Features
	Globus Library Dependency
	Globus Connect Server Service
	Configurable Setup
	Containerization

	Progress on Operations
	Demonstration Service
	New Staging Environment
	Documentation of a DataFlow Deployment
	Infrastructure Repositories

	Other Notable Outcomes
	Conclusion
	REFERENCES

